Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Lars Kr. Hansen,^a* Annette Bayer^a and Odd R. Gautun^b

^aDepartment of Chemistry, University of Tromsø, N-9037 Tromsø, Norway, and ^bDepartment of Chemistry, Norwegian University of Science and Technology, N-7491 Trondheim, Norway

Correspondence e-mail: larsk@chem.uit.no

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.007 Å R factor = 0.057 wR factor = 0.162 Data-to-parameter ratio = 10.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. organic papers

exo-3,6-Dihydro-3-methyl-2-(toluene-4-sulfonyl)- $1\lambda^4$,2-thiazine 1-oxide

The title compound, $C_{12}H_{15}NO_3S_2$, is shown to be the *exo* isomer with a *cis* arrangement of the S=O group and the methyl group in the thiazine ring.

Received 11 October 2001 Accepted 22 October 2001 Online 27 October 2001

Comment

Hetero-[4+2]-cycloadditions of *N*-sulfinyl compounds (R–N=S=O) and dienes provide 1,2-thiazine 1-oxides, which can be further transformed into synthetically useful derivatives, *e.g.* homoallylic amines or vicinal aminoalcohols (Weinreb, 1988). The title compound, (I), was obtained by a [2+4]-cycloaddition of *trans*-1,3-pentadiene and *N*-sulfinyl-4-toluenesulfonamide at room temperature in CH₂Cl₂ (Kresze & Wagner, 1972). The reaction product contained two isomers in the ratio 4:1 with different orientations of the S=O bond relative to the methyl group. The *exo* isomer has the S=O bond *cis* to the methyl group, while the *endo* isomer has a *trans* orientation. Here, the structure of the major compound is reported. The major compound was found to be the *exo* isomer.

The title compound crystallizes in the orthorhombic noncentrosymmetric space group $P2_12_12_1$ and is therefore a conglomerate under the applied conditions of crystallization. A molecule with the atomic numbering scheme is shown in Fig. 1. The thiazine part of the molecule is found to be in a half-chair conformation, and one also sees that the S=O and the C4–C5 bonds are on the same side of the thiazine ring, giving the exo isomer. Least-squares planes through the phenyl part (atoms C6-C11) and the thiazine part (atoms C1-C4) show an angle of 71.2 $(2)^{\circ}$ between the two planes. Atoms S1 and N1 are displaced by 0.525 (9) and 0.261 (8) Å, respectively, on opposite sides with respect to the plane through atoms C1-C4. The total puckering amplitude parameter (Cremer & Pople, 1982) $Q_T = 0.499$ (3) Å and one notices the presence of a local twofold axis running through the midpoints of the S1-N1 and C2-C3 bonds. Atoms C12 and S2 nearly lie in the phenyl group plane, being displaced by 0.016 (9) and 0.099 (6) Å on the same side with respect to that plane. A selection of bond lengths shows that these are all within the normal range of such bonds (Allen et al., 1987).

Printed in Great Britain - all rights reserved

© 2001 International Union of Crystallography

Figure 1

A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 20% probability level.

S2=O2 and S2=O3 are both 1.428 (3) Å, while the S1=O1 distance is 1.473 (4) Å. The molecules are packed in the crystal through a series of intra- and intermolecular short contacts (Taylor & Kennard, 1982) (see Table 1).

Experimental

The 1,4-thiazine 1-oxide was dissolved in CH₂Cl₂ and heptane was added until saturation. Crystals were grown by vapour diffusion of the solvent in the refrigerator.

Crystal data

```
C_{12}H_{15}NO_3S_2
                                                       Mo K\alpha radiation
M_r = 285.37
                                                      Cell parameters from 25
Orthorhombic, P212121
                                                          reflections
a = 8.277 (2) \text{ Å}
                                                      \theta = 8 - 14^{\circ}
                                                      \mu=0.40~\mathrm{mm}^{-1}
b = 9.723 (2) Å
c = 16.500 (2) \text{ Å}
                                                       T = 298 (2) \text{ K}
V = 1327.9 (5) Å<sup>3</sup>
                                                      Block, colourless
Z = 4
                                                      0.5 \times 0.3 \times 0.2 \text{ mm}
D_x = 1.427 \text{ Mg m}^{-3}
Data collection
Enraf-Nonius CAD-4
                                                      \theta_{\rm max} = 26.9^{\circ}
   diffractometer
                                                      h = 0 \rightarrow 10
```

 ω –2 θ scans 1710 measured reflections 1669 independent reflections 1386 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.020$

 $k = -3 \rightarrow 12$ $l = -6 \rightarrow 21$ 3 standard reflections frequency: 120 min intensity decay: 1% Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.1332P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.057$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.162$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 1.06	$\Delta \rho_{\rm max} = 0.91 \ {\rm e} \ {\rm \AA}^{-3}$
1669 reflections	$\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$
165 parameters	Absolute structure: Flack (1983)
H-atom parameters constrained	Flack parameter = 0.12 (19)

Table 1 Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C1-H1B\cdots O2^{i}$	0.97	2.39	3.225 (6)	144
C11-H11···O2	0.93	2.51	2.888 (6)	104
C3-H3···O2 ⁱⁱ	0.93	2.58	3.487 (6)	165
$C1-H1A\cdots O3^{iii}$	0.97	2.66	3.601 (6)	164
$C5-H5A\cdots O1$	0.96	2.56	3.249 (8)	128
$C2-H2\cdots O1^{iv}$	0.93	2.63	3.555 (6)	178

Symmetry codes: (i) 1 + x, y, z; (ii) $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (iii) $\frac{1}{2} + x, \frac{3}{2} - y, 1 - z$; (iv) $2-x, \frac{1}{2}+y, \frac{1}{2}-z.$

Data collection: CAD-4-PC Software (Enraf-Nonius, 1992); cell refinement: CELDIM in CAD-4-PC Software; data reduction: XCAD (McArdle & Higgins, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: OSCAIL (McArdle, 1993).

One of us (AB) thanks the Norwegian Research Council for financial support (grant 122792/410).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Cremer, D. & Pople, J. A. (1982). J. Am. Chem. Soc. 97, 1354-1359.
- Enraf-Nonius (1992). CAD-4-PC Software. Version 1.1 Enraf-Nonius, Delft, The Netherlands.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Kresze, G. & Wagner, U. (1972). Liebigs Ann. Chem. 762, 93-105.
- McArdle, P. (1993). J. Appl. Cryst. 26, 752.
- McArdle, P. (1995). J. Appl. Cryst. 28, 65.
- McArdle, P. & Higgins, T. (1995). XCAD. University College, Galway, Ireland. Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of
- Göttingen, Germany.
- Taylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.
- Weinreb, S. M. (1988). Acc. Chem. Res. 21, 313-318.