Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Lars Kr. Hansen, ${ }^{\text {a * }}$ Annette Bayer $^{\text {a }}$ and Odd R. Gautun ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway, and
${ }^{\mathbf{b}}$ Department of Chemistry, Norwegian University of Science and Technology, N-7491
Trondheim, Norway

Correspondence e-mail: larsk@chem.uit.no

Key indicators
Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.057$
$w R$ factor $=0.162$
Data-to-parameter ratio $=10.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

exo-3,6-Dihydro-3-methyl-2-(toluene-4-sulfonyl)$1 \lambda^{4}$,2-thiazine 1 -oxide

The title compound, $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{~S}_{2}$, is shown to be the exo isomer with a cis arrangement of the $\mathrm{S}=\mathrm{O}$ group and the methyl group in the thiazine ring.

Comment

Hetero-[4+2]-cycloadditions of N-sulfinyl compounds ($R-$ $\mathrm{N}=\mathrm{S}=\mathrm{O}$) and dienes provide 1,2-thiazine 1-oxides, which can be further transformed into synthetically useful derivatives, e.g. homoallylic amines or vicinal aminoalcohols (Weinreb, 1988). The title compound, (I), was obtained by a $[2+4]$ cycloaddition of trans-1,3-pentadiene and N-sulfinyl-4toluenesulfonamide at room temperature in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Kresze \& Wagner, 1972). The reaction product contained two isomers in the ratio $4: 1$ with different orientations of the $\mathrm{S}=\mathrm{O}$ bond relative to the methyl group. The exo isomer has the $\mathrm{S}=\mathrm{O}$ bond cis to the methyl group, while the endo isomer has a trans orientation. Here, the structure of the major compound is reported. The major compound was found to be the exo isomer.

(I)

The title compound crystallizes in the orthorhombic noncentrosymmetric space group $P 2_{1} 2_{1} 2_{1}$ and is therefore a conglomerate under the applied conditions of crystallization. A molecule with the atomic numbering scheme is shown in Fig. 1. The thiazine part of the molecule is found to be in a half-chair conformation, and one also sees that the $\mathrm{S}=\mathrm{O}$ and the $\mathrm{C} 4-\mathrm{C} 5$ bonds are on the same side of the thiazine ring, giving the exo isomer. Least-squares planes through the phenyl part (atoms C6-C11) and the thiazine part (atoms $\mathrm{C} 1-$ C4) show an angle of $71.2(2)^{\circ}$ between the two planes. Atoms S1 and N1 are displaced by 0.525 (9) and 0.261 (8) \AA, respectively, on opposite sides with respect to the plane through atoms $\mathrm{C} 1-\mathrm{C} 4$. The total puckering amplitude parameter (Cremer \& Pople, 1982) $Q_{T}=0.499$ (3) \AA and one notices the presence of a local twofold axis running through the midpoints of the $\mathrm{S} 1-\mathrm{N} 1$ and $\mathrm{C} 2-\mathrm{C} 3$ bonds. Atoms C12 and S 2 nearly lie in the phenyl group plane, being displaced by 0.016 (9) and 0.099 (6) \AA on the same side with respect to that plane. A selection of bond lengths shows that these are all within the normal range of such bonds (Allen et al., 1987).

Received 11 October 2001 Accepted 22 October 2001 Online 27 October 2001

Figure 1
A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 20% probability level.
$\mathrm{S} 2=\mathrm{O} 2$ and $\mathrm{S} 2=\mathrm{O} 3$ are both 1.428 (3) \AA, while the $\mathrm{S} 1=\mathrm{O} 1$ distance is 1.473 (4) \AA. The molecules are packed in the crystal through a series of intra- and intermolecular short contacts (Taylor \& Kennard, 1982) (see Table 1).

Experimental

The 1,4-thiazine 1-oxide was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and heptane was added until saturation. Crystals were grown by vapour diffusion of the solvent in the refrigerator.

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{~S}_{2}$
$M_{r}=285.37$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=8.277$ (2) Å
$b=9.723$ (2) \AA
$c=16.500$ (2) \AA
$V=1327.9(5) \AA^{3}$
$Z=4$
$D_{x}=1.427 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega-2 \theta$ scans
1710 measured reflections
1669 independent reflections
1386 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$

Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=8-14^{\circ}$
$\mu=0.40 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colourless
$0.5 \times 0.3 \times 0.2 \mathrm{~mm}$
$\theta_{\text {max }}=26.9^{\circ}$
$h=0 \rightarrow 10$
$k=-3 \rightarrow 12$
$l=-6 \rightarrow 21$
3 standard reflections frequency: 120 min intensity decay: 1%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.162$
$S=1.06$
1669 reflections
165 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1332 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.91 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.41 \mathrm{e}^{-3}$
Absolute structure: Flack (1983)
Flack parameter $=0.12(19)$

Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B} \cdots \mathrm{O}^{\text {i }}$	0.97	2.39	3.225 (6)	144
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O} 2$	0.93	2.51	2.888 (6)	104
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 2^{\text {ii }}$	0.93	2.58	3.487 (6)	165
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{O} 3^{\text {iii }}$	0.97	2.66	3.601 (6)	164
C5-H5A \cdots O1	0.96	2.56	3.249 (8)	128
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{\text {iv }}$	0.93	2.63	3.555 (6)	178

Symmetry codes: (i) $1+x, y, z$; (ii) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iii) $\frac{1}{2}+x, \frac{3}{2}-y, 1-z$; (iv) $2-x, \frac{1}{2}+y, \frac{1}{2}-z$.

Data collection: CAD-4-PC Software (Enraf-Nonius, 1992); cell refinement: CELDIM in CAD-4-PC Software; data reduction: XCAD (McArdle \& Higgins, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: OSCAIL (McArdle, 1993).

One of us (AB) thanks the Norwegian Research Council for financial support (grant 122792/410).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Cremer, D. \& Pople, J. A. (1982). J. Am. Chem. Soc. 97, 1354-1359.
Enraf-Nonius (1992). CAD-4-PC Software. Version 1.1 Enraf-Nonius, Delft, The Netherlands.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Kresze, G. \& Wagner, U. (1972). Liebigs Ann. Chem. 762, 93-105.
McArdle, P. (1993). J. Appl. Cryst. 26, 752.
McArdle, P. (1995). J. Appl. Cryst. 28, 65.
McArdle, P. \& Higgins, T. (1995). XCAD. University College, Galway, Ireland.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Taylor, R. \& Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.
Weinreb, S. M. (1988). Acc. Chem. Res. 21, 313-318.

